Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Water Res ; 254: 121379, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422694

RESUMO

UV degradation of marine microplastics (MPs) could increase their vector potential for pathogenic bacteria and threaten human health. However, little is known about how the degree of UV aging affects interactions between MPs and pathogens and how various types of MPs differ in their impact on seafood safety. This study investigated five types of UV-aged MPs and their impact on Vibrio parahaemolyticus, a seafood pathogen. MPs exposed to UV for 60 days showed similar physicochemical changes such as surface cracking and hydrophobicity reduction. Regardless of the type, longer UV exposure of MPs resulted in more biofilm formation on the surface under the same conditions. V. parahaemolyticus types that formed biofilms on the MP surface showed 1.4- to 5.0-fold upregulation of virulence-related genes compared to those that did not form biofilms, independently of UV exposure. However, longer UV exposure increased resistance of V. parahaemolyticus on MPs to chlorine, heat, and human gastrointestinal environment. This study implies that the more UV degradation occurs on MPs, the more microbial biofilm formation is induced, which can significantly increase virulence and environmental resistance of bacteria regardless of the type of MP.


Assuntos
Vibrio parahaemolyticus , Humanos , Idoso , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Microplásticos , Plásticos , Alimentos Marinhos/microbiologia , Biofilmes , Bactérias
2.
Int J Food Microbiol ; 411: 110519, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101190

RESUMO

In this study, a combined treatment of peracetic acid (PAA) and 280 nm Ultraviolet-C (UVC) - Light emitting diode (LED) was applied for inactivating foodborne pathogens in water and apples. The combined treatment of PAA (50 ppm) and UVC-LED showed synergistic inactivation effects against Escherichia coli O157:H7 and Listeria monocytogenes in water. In mechanism analysis, PAA/UVC-LED treatment induced more lipid peroxidation, intracellular ROS, membrane, and DNA damage than a single treatment. Among them, membrane damage was the main synergistic inactivation mechanism of combination treatment. Cell rupture and shrink of both pathogens after PAA/UVC-LED treatment were also identified through scanning electron microscope (SEM) analysis. To examine inactivation of pathogens on the surface of apples by PAA, UVC-LED, and their combined treatment, a washing system (WS) was developed and used. Through applying the WS, PAA/UVC-LED treatment effectively inactivated two pathogens in washing solution and on the surface of apples below the detection limit (3.30 log CFU/2000 mL and 2.0 log CFU/apple) within 5 min. In addition, there was no significant difference in color or firmness of apples after PAA/UVC-LED treatment (p > 0.05).


Assuntos
Listeria monocytogenes , Malus , Ácido Peracético/farmacologia , Água/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos
3.
Nat Commun ; 14(1): 3597, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328461

RESUMO

Pen-drawing is an intuitive, convenient, and creative fabrication method for delivering emergent and adaptive design to real devices. To demonstrate the application of pen-drawing to robot construction, we developed pen-drawn Marangoni swimmers that perform complex programmed tasks using a simple and accessible manufacturing process. By simply drawing on substrates using ink-based Marangoni fuel, the swimmers demonstrate advanced robotic motions such as polygon and star-shaped trajectories, and navigate through maze. The versatility of pen-drawing allows the integration of the swimmers with time-varying substrates, enabling multi-step motion tasks such as cargo delivery and return to the original place. We believe that our pen-based approach will significantly expand the potential applications of miniaturized swimming robots and provide new opportunities for simple robotic implementations.


Assuntos
Robótica , Movimento (Física) , Natação
4.
Food Res Int ; 167: 112687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087257

RESUMO

This study observed that when plasma-activated water (PAW) was combined with organic acid, it showed a synergistic inactivation effect on Listeria monocytogenes, which is highly resistant to PAW. When comparing various organic acids, lactic acid (LA) showed the greatest synergistic effect, followed by malic acid (MA), citric acid (CA), and acetic acid (AA), whereas propionic acid (PA) did not show a synergistic effect. Organic acid lowered the activity of ROS defense enzymes (catalase, superoxide dismutase) by reducing intracellular pH (pHi), which induced the increase in the accumulation of ROS of PAW within the cell. In the end, the synergistic inactivation effect appeared as the increased occurrence of oxidative damage when organic acid was combined as a series of preceding causes. In this case, LA with the greatest ability to lower the pH induced the greatest synergistic effect, suggesting that LA is the best candidate to be combined with PAW. As a result of observing changes in inactivation activity for L. monocytogenes of PAW combined with 1.0% LA while storing at - 80, -20, 4, 25, & 37 °C for 30 days, respectively, it was confirmed that the lower the temperature, the lower the activity loss during the storage period, and that it had an activity of 3.72 log reduction based on 10 min treatment when stored at - 80 °C for 30 days. Application of PAW combined with 1.0% LA stored at - 80 °C for 30 days to mackerel inoculated with L. monocytogenes in ice form resulted in a decrease of 4.53 log after 120 min treatment, without changing the quality of mackerel. These results suggest that combining LA with PAW can be an effective control strategy for L. monocytogenes with high resistance to PAW, and can be effectively utilized, even in ice form.


Assuntos
Manipulação de Alimentos , Listeria monocytogenes , Manipulação de Alimentos/métodos , Água , Gelo , Espécies Reativas de Oxigênio , Contagem de Colônia Microbiana , Ácidos/farmacologia , Ácido Láctico
5.
Sci Rep ; 13(1): 6687, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095161

RESUMO

Recently, several probiotic products have been developed; however, most probiotic applications focused on prokaryotic bacteria whereas eukaryotic probiotics have received little attention. Saccharomyces cerevisiae yeast strains are eukaryotes notable for their fermentation and functional food applications. The present study investigated the novel yeast strains isolated from Korean fermented beverages and examined their potential probiotic characteristics. We investigated seven strains among 100 isolates with probiotic characteristics further. The strains have capabilities such as auto-aggregation tendency, co-aggregation with a pathogen, hydrophobicity with n-hexadecane,1,1-diphenyl-2-picrylhydrazyl scavenging effect, survival in simulated gastrointestinal tract conditions and the adhesion ability of the strains to the Caco-2 cells. Furthermore, all the strains contained high cell wall glucan content, a polysaccharide with immunological effects. Internal transcribed spacer sequencing identified the Saccharomyces strains selected in the present study as probiotics. To examine the effects of alleviating inflammation in cells, nitric oxide generation in raw 264.7 cells with S. cerevisiae showed that S. cerevisiae GILA could be a potential probiotic strain able to alleviate inflammation. Three probiotics of S. cerevisiae GILA strains were chosen by in vivo screening with a dextran sulfate sodium-induced colitis murine model. In particular, GILA 118 down-regulates neutrophil-lymphocyte ratio and myeloperoxidase in mice treated with DSS. The expression levels of genes encoding tight junction proteins in the colon were upregulated, cytokine interleukin-10 was significantly increased, and tumor necrosis factor-α was reduced in the serum.


Assuntos
Colite , Probióticos , Humanos , Animais , Camundongos , Saccharomyces cerevisiae/metabolismo , Sulfato de Dextrana/efeitos adversos , Células CACO-2 , Modelos Animais de Doenças , Colite/induzido quimicamente , Inflamação , Probióticos/metabolismo
6.
Anal Chem ; 94(49): 17186-17194, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36399654

RESUMO

A high-throughput, accurate screening is crucial for the prevention and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current methods, which involve sampling from the nasopharyngeal (NP) area by medical staffs, constitute a fundamental bottleneck in expanding the testing capacity. To meet the scales required for population-level surveillance, self-collectable specimens can be used; however, its low viral load has hindered its clinical adoption. Here, we describe a magnetic nanoparticle functionalized with synthetic apolipoprotein H (ApoH) peptides to capture, concentrate, and purify viruses. The ApoH assay demonstrates a viral enrichment efficiency of >90% for both SARS-CoV-2 and its variants, leading to an order of magnitude improvement in analytical sensitivity. For validation, we apply the assay to a total of 84 clinical specimens including nasal, oral, and mouth gargles obtained from COVID-19 patients. As a result, a 100% positivity rate is achieved from the patient-collected nasal and gargle samples, which exceeds that of the traditional NP swab method. The simple 12 min pre-enrichment assay enabling the use of self-collectable samples will be a practical solution to overcome the overwhelming diagnostic capacity. Furthermore, the methodology can easily be built on various clinical protocols, allowing its broad applicability to various disease diagnoses.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , beta 2-Glicoproteína I , Teste para COVID-19 , Nasofaringe , Manejo de Espécimes/métodos , Peptídeos
7.
Food Microbiol ; 108: 104098, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088114

RESUMO

This study investigated the bactericidal activity of plasma-activated water (PAW) generated with a remote discharge reactor against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes. PAW-40, -80, and -120, prepared by activating distilled water for 40, 80, and 120 min, respectively, showed inactivation activity against pathogenic bacteria, which increased as the activation time increased due to decrease in pH and increase in oxidation-reduction potential and reactive oxygen/nitrogen species (RONS) of PAW. In addition, Gram-positive bacteria L. monocytogenes showed superior resistance to PAW than Gram-negative bacteria E. coli O157:H7 and S. Typhimurium. Compared with E. coli O157:H7 and S. Typhimurium, L. monocytogens exhibited less cell membrane damage, lipid peroxidation, and intracellular ROS accumulation after PAW treatment, which indicated that L. monocytogenes exhibited greater resistance because the thick cell wall buffered RONS diffusion into the cell. PAW also showed a control effect on the pathogenic bacteria on cherry tomato, and the effect was maintained throughout five repeated applications; thus, proposing high reusability of PAW. The results of this study propose that PAW generated with a remote discharge reactor can be utilized for pathogen control and provides basic data for related research and practical industrial applications.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Purificação da Água , Membrana Celular , Escherichia coli O157/fisiologia , Peroxidação de Lipídeos , Listeria monocytogenes/fisiologia , Espécies Reativas de Oxigênio
8.
Environ Sci Technol ; 56(18): 12886-12897, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044680

RESUMO

Within-city ultrafine particle (UFP) concentrations vary sharply since they are influenced by various factors. We developed prediction models for short-term UFP exposures using street-level images collected by a camera installed on a vehicle rooftop, paired with air quality measurements conducted during a large-scale mobile monitoring campaign in Toronto, Canada. Convolutional neural network models were trained to extract traffic and built environment features from images. These features, along with regional air quality and meteorology data were used to predict short-term UFP concentration as a continuous and categorical variable. A gradient boost model for UFP as a continuous variable achieved R2 = 0.66 and RMSE = 9391.8#/cm3 (mean values for 10-fold cross-validation). The model predicting categorical UFP achieved accuracies for "Low" and "High" UFP of 77 and 70%, respectively. The presence of trucks and other traffic parameters were associated with higher UFPs, and the spatial distribution of elevated short-term UFP followed the distribution of single-unit trucks. This study demonstrates that pictures captured on urban streets, associated with regional air quality and meteorology, can adequately predict short-term UFP exposure. Capturing the spatial distribution of high-frequency short-term UFP spikes in urban areas provides crucial information for the management of near-road air pollution hot spots.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise
9.
Biosensors (Basel) ; 11(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34436085

RESUMO

Since the discovery of antibiotics, the emergence of antibiotic resistance has become a global issue that is threatening society. In the era of antibiotic resistance, finding the proper antibiotics through antibiotic susceptibility testing (AST) is crucial in clinical settings. However, the current clinical process of AST based on the broth microdilution test has limitations on scalability to expand the number of antibiotics that are tested with various concentrations. Here, we used color-coded droplets to expand the multiplexing of AST regarding the kind and concentration of antibiotics. Color type and density differentiate the kind of antibiotics and concentration, respectively. Microscopic images of a large view field contain numbers of droplets with different testing conditions. Image processing analysis detects each droplet, decodes color codes, and measures the bacterial growth in the droplet. Testing E. coli ATCC 25922 with ampicillin, gentamicin, and tetracycline shows that the system can provide a robust and scalable platform for multiplexed AST. Furthermore, the system can be applied to various drug testing systems, which require several different testing conditions.


Assuntos
Testes de Sensibilidade Microbiana , Ampicilina , Antibacterianos , Técnicas Biossensoriais , Resistência Microbiana a Medicamentos , Desenho de Equipamento , Escherichia coli , Processamento de Imagem Assistida por Computador , Técnicas Analíticas Microfluídicas , Tetraciclina , Fatores de Tempo
10.
Sci Adv ; 7(13)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33762344

RESUMO

Pen drawing is a method that allows simple, inexpensive, and intuitive two-dimensional (2D) fabrication. To integrate such advantages of pen drawing in fabricating 3D objects, we developed a 3D fabrication technology that can directly transform pen-drawn 2D precursors into 3D geometries. 2D-to-3D transformation of pen drawings is facilitated by surface tension-driven capillary peeling and floating of dried ink film when the drawing is dipped into an aqueous monomer solution. Selective control of the floating and anchoring parts of a 2D precursor allowed the 2D drawing to transform into the designed 3D structure. The transformed 3D geometry can then be fixed by structural reinforcement using surface-initiated polymerization. By transforming simple pen-drawn 2D structures into complex 3D structures, our approach enables freestyle rapid prototyping via pen drawing, as well as mass production of 3D objects via roll-to-roll processing.

11.
Food Microbiol ; 95: 103676, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397610

RESUMO

This study investigated the antimicrobial effect of hot water with citric acid against Escherichia coli O157:H7 biofilm on stainless steel (SS). Hot water (50, 60, or 70 °C) with 2% citric acid exhibited a synergistic bactericidal effect on the pathogen biofilm. It was revealed that hot water and citric acid combination induced sub-lethally injured cells. Additionally, mechanisms of the synergistic bactericidal effects of hot water with citric acid were identified through several approaches. In terms of biofilm matrix, hot water removes exopolysaccharides, a major component of extracellular polymeric substances (EPS), thereby increasing contact between surface cells and citric acid, resulting in a synergistic bactericidal effect. In terms of the cell itself, increased permeability of citric acid through cell membranes destructed by hot water promotes the inactivation of superoxide dismutase (SOD) in E. coli O157:H7, which induce synergistic generation of reactive oxygen species (ROS) which promote inactivation of cell by activating lipid peroxidation, resulting in destruction of the cell membrane. Therefore, it is interpreted that when hot water with citric acid is applied to E. coli O157:H7 biofilm, synergy effects on the biofilm matrix and cell itself have a complex interaction with each other, thus causing a dramatic synergistic bactericidal effect.


Assuntos
Biofilmes/efeitos dos fármacos , Ácido Cítrico/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Escherichia coli O157/efeitos dos fármacos , Água/farmacologia , Desinfetantes/química , Desinfecção/instrumentação , Escherichia coli O157/crescimento & desenvolvimento , Temperatura Alta , Espécies Reativas de Oxigênio/metabolismo , Aço Inoxidável/análise , Água/química
12.
J Cataract Refract Surg ; 47(2): 192-197, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32947388

RESUMO

PURPOSE: To compare the visual outcomes and patient satisfaction after bilateral implantation of an extended range-of-vision intraocular lens (ERoV IOL) (Tecnis Symfony) vs 2 different mix-and-match approaches combining the ERoV IOL with bifocal IOLs. SETTING: Glory Seoul Eye Clinic, Seoul, South Korea. DESIGN: Prospective observational nonrandomized comparative study. METHODS: Patients undergoing cataract surgery were distributed into 3 groups based on their lifestyle and near visual demands: bilateral Symfony IOL, mix-and-match Symfony IOL with bifocal +3.25 diopters (D) IOL, and Symfony IOL with bifocal +4.0 D IOL. Binocular uncorrected visual acuity for distance, intermediate, and near, manifest refraction, defocus curve, contrast sensitivity, and subjective visual perception and satisfaction (photic phenomena, spectacle independence, and patient satisfaction) were evaluated at 1 week, 1 month, and 3 months postoperatively. RESULTS: The study comprised 103 people (206 eyes). There were no significant differences for uncorrected visual acuity between groups for distance, intermediate, and near vision (P > .05). Contrast sensitivity under low and high luminance conditions was not different between groups (P > .05). Influence of glare on image perception was found to reduce contrast sensitivity more in the bilateral group for smaller target sizes (P < .05). Patients implanted bilaterally with Symfony IOLs reported photic phenomena more frequently than those implanted with the mix-and-match combinations. CONCLUSIONS: All combinations evaluated provided good visual outcomes for distance, intermediate, and near. The lower incidence of photic phenomena reported by patients, and the lower reduction on contrast sensitivity for low illumination levels with the presence of glare, suggest that mix-and-match approaches might be a better option compared with bilateral implantation of ERoV IOLs.


Assuntos
Lentes Intraoculares , Facoemulsificação , Sensibilidades de Contraste , Humanos , Implante de Lente Intraocular , Satisfação do Paciente , Estudos Prospectivos , Desenho de Prótese , Pseudofacia , Refração Ocular , República da Coreia , Visão Binocular
13.
Int J Food Microbiol ; 329: 108665, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32497789

RESUMO

Simultaneous treatment with 222-nm KrCl excilamp and mild heating (EX-MH) at 45, 50 and 55 °C showed synergistic bactericidal effects on non-acid and acid adapted cells of Escherichia coli O157:H7 and Salmonella Typhimurium in apple juice. In particular, acid-adapted pathogens exhibited increased resistance to EX-MH compared to pathogenic bacteria that were not acid-adapted. Also, elucidation of the synergistic bactericidal mechanism of EX-MH was performed through several assays and this mechanism was described as follows: (i) when KrCl excilamp (EX) and mild heating (MH) are applied simultaneously, MH reversibly inactivates the antioxidant enzyme, superoxide dismutase (SOD), thereby increasing accumulation of reactive oxygen species (ROS) generated by EX and thus inducing synergistic ROS generation, (ii) ROS production induces lipid peroxidation occurrence in the cell membrane, (iii) this lipid peroxidation occurrence in the cell membrane induces synergistic destruction of cell membrane, resulting in synergistic cell death. While EX-MH of 45, 50, or 55 °C reduced E. coli O157:H7 (the pathogen most resistant to EX-MH) in apple juice by 5-log, the qualities such as color (L*, a*, and b*), total phenolic compounds (TPC), and DPPH free radical scavenging activity of apple juice did not change significantly (P > 0.05). This study not only suggests the applicability of EX-MH to the apple juice industry, but also can be used as baseline data for future relevant research.


Assuntos
Antibacterianos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Microbiologia de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Calefação , Viabilidade Microbiana , Salmonella typhimurium/efeitos dos fármacos , Bebidas/microbiologia , Cloro/farmacologia , Contagem de Colônia Microbiana , Criptônio/química , Criptônio/farmacologia , Malus/microbiologia
14.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32220842

RESUMO

The aim of this study was to investigate the sporicidal effect of a krypton-chlorine (KrCl) excilamp against Alicyclobacillus acidoterrestris spores and to compare its inactivation mechanism to that of a conventional UV lamp containing mercury (Hg). The inactivation effect of the KrCl excilamp was not significantly different from that of the Hg UV lamp for A. acidoterrestris spores in apple juice despite the 222-nm wavelength of the KrCl excilamp having a higher absorption coefficient in apple juice than the 254-nm wavelength of the Hg UV lamp; this is because KrCl excilamps have a fundamentally greater inactivation effect than Hg UV lamps, which is confirmed under ideal conditions (phosphate-buffered saline). The inactivation mechanism analysis revealed that the DNA damage induced by the KrCl excilamp was not significantly different (P > 0.05) from that induced by the Hg UV lamp, while the KrCl excilamp caused significantly higher (P < 0.05) lipid peroxidation incidence and permeability change in the inner membrane of A. acidoterrestris spores than did the Hg UV lamp. Meanwhile, the KrCl excilamp did not generate significant (P > 0.05) intracellular reactive oxygen species, indicating that the KrCl excilamp causes damage only through the direct absorption of UV light. In addition, after KrCl excilamp treatment with a dose of 2,011 mJ/cm2 to reduce A. acidoterrestris spores in apple juice by 5 logs, there were no significant (P > 0.05) changes in quality parameters such as color (L*, a*, and b*), total phenolic compounds, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity.IMPORTANCEAlicyclobacillus acidoterrestris spores, which have high resistance to thermal treatment and can germinate even at low pH, are very troublesome in the juice industry. UV technology, a nonthermal treatment, can be an excellent means to control heat-resistant A. acidoterrestris spores in place of thermal treatment. However, the traditionally applied UV sources are lamps that contain mercury (Hg), which is harmful to humans and the environment; thus, there is a need to apply novel UV technology without the use of Hg. In response to this issue, excilamps, an Hg-free UV source, have been actively studied. However, no studies have been conducted applying this technique to control A. acidoterrestris spores. Therefore, the results of this study, which applied a KrCl excilamp for the control of A. acidoterrestris spores and elucidated the inactivation principle, are expected to be utilized as important basic data for application to actual industry or conducting further studies.


Assuntos
Alicyclobacillus/efeitos da radiação , Antibacterianos/análise , Sucos de Frutas e Vegetais/análise , Lasers de Excimer , Malus/química , Esporos Bacterianos/efeitos da radiação , Sucos de Frutas e Vegetais/efeitos da radiação , Malus/efeitos da radiação
15.
Appl Environ Microbiol ; 85(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952663

RESUMO

In this study, we developed a washing system capable of decontaminating fresh produce by combining the Spindle apparatus, which detaches microorganisms on sample surfaces, and a 222-nm krypton-chlorine excimer lamp (KrCl excilamp) (Sp-Ex) and investigated their decontamination effect against Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes on apple (Malus domestica Borkh.) and bell pepper (Capsicum annuum L.) surfaces. Initial levels of the three pathogens were approximately 108 CFU/sample. Both E. coli O157:H7 and S. Typhimurium were reduced to below the detection limit (2.0 log CFU/sample) after 5 and 7 min of treatment on apple and bell pepper surfaces, respectively. The amounts of L. monocytogenes on apple and bell pepper surfaces were reduced by 4.26 and 5.48 logs, respectively, after 7 min of treatment. The decontamination effect of the Sp-Ex was influenced by the hydrophobicity of the sample surface as well as the microbial cell surface, and the decontamination effect decreased as the two hydrophobicity values increased. To improve the decontamination effect of the Sp-Ex, Tween 20, a surfactant that weakens the hydrophobic interaction between the sample surface and pathogenic bacteria, was incorporated into Sp-Ex processing. It was found that its decontamination effect was significantly (P < 0.05) increased by the addition of 0.1% Tween 20. Sp-Ex did not cause significant quality changes in apple or bell pepper surfaces during 7 days storage following treatment (P > 0.05). Our results suggest that Sp-Ex could be applied as a system to control pathogens in place of chemical sanitizer washing by the fresh-produce industry.IMPORTANCE Although most fresh-produce processing currently controls pathogens by means of washing with sanitizers, there are still problems such as the generation of harmful substances and changes in product quality. A combination system composed of the Spindle and a 222-nm KrCl excilamp (Sp-Ex) developed in this study reduced pathogens on apple and bell pepper surfaces using sanitizer-free water without altering produce color and texture. This study demonstrates the potential of the Sp-Ex to replace conventional washing with sanitizers, and it can be used as baseline data for practical application by industry. In addition, implementation of the Sp-Ex developed in this study is expected not only to meet consumer preference for fresh, minimally processed produce but also to reduce human exposure to harmful chemicals while being beneficial to the environment.


Assuntos
Capsicum/microbiologia , Cloro/farmacologia , Descontaminação/métodos , Desinfetantes/farmacologia , Criptônio/farmacologia , Lasers de Excimer , Malus/microbiologia , Descontaminação/instrumentação , Escherichia coli O157/efeitos da radiação , Microbiologia de Alimentos , Listeria monocytogenes/efeitos da radiação , Salmonella typhimurium/efeitos da radiação
16.
Food Microbiol ; 82: 171-176, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027771

RESUMO

We examined the control effect of a 222-nm KrCl excilamp on foodborne pathogens on alfalfa seeds and compared it with a conventional 254-nm low-pressure (LP) Hg lamp. When the 222-nm KrCl excilamp treated seeds at 87, 174 and 261 mJ/cm2, the log reductions of Escherichia coli O157:H7 (E. coli O157:H7) were 0.85, 1.77, and 2.77, respectively, and Salmonella Typhimurium (S. Typhimurium) experienced log reductions of 1.22, 2.27, and 3.04, respectively. When the 254-nm LP Hg lamp was applied at 87, 174, and 261 mJ/cm2, the log reductions of E. coli O157: H7 were 0.7, 1.16, and 1.43, respectively, and those of S. Typhimurium were 0.75, 1.15, and 1.85, respectively. Therefore, it was shown that the 222-nm KrCl excilamp was more effective than the 254-nm LP Hg lamp in reducing foodborne pathogens. The germination rate decreased to less than 80% after 261 mJ/cm2 treatment with the 254-nm LP Hg lamp, while more than 90% was maintained with 261 mJ/cm2 222-nm KrCl excilamp treatment. DNA damage assay showed that the difference in germination rate was due to DNA damage resulting from 254-nm LP Hg lamp treatment. However, 222 nm KrCl excilamp treatment did not cause DNA damage, resulting in no difference in germination rate compared to that of non-treated alfalfa seeds. Overall, these results demonstrate the utility of the 222-nm KrCl excilamp as a foodborne pathogen control intervention for the alfalfa seed industry.


Assuntos
Escherichia coli O157/efeitos da radiação , Irradiação de Alimentos/normas , Microbiologia de Alimentos/métodos , Germinação/efeitos da radiação , Medicago sativa , Salmonella typhimurium/efeitos da radiação , Sementes/microbiologia , Cloretos/química , Contagem de Colônia Microbiana , Criptônio/química , Lasers de Excimer , Sementes/fisiologia
17.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30610077

RESUMO

In this study, we examined the change in resistance of Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 to 222-nm krypton-chlorine (KrCl) excilamp treatment as influenced by acid adaptation and identified a mechanism of resistance change. In addition, we measured changes in apple juice quality indicators, such as color, total phenols, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, during treatment. Non-acid-adapted and acid-adapted pathogens were induced by growing the cells in tryptic soy broth without dextrose (TSB w/o D) at pH 7.3 and in TSB w/o D at pH 5.0 (adjusted with HCl), respectively. For the KrCl excilamp treatment, acid-adapted pathogens exhibited significantly (P < 0.05) higher D5d values, which indicate dosages required to achieve a 5-log reduction, than those for non-acid-adapted pathogens in both commercially clarified apple juice and phosphate-buffered saline (PBS), and the pathogens in the juice showed significantly (P < 0.05) higher D5d values than those for pathogens in PBS because of the UV-absorbing characteristics of apple juice. Through mechanism identification, it was found that the generation of lipid peroxidation in the cell membrane, inducing cell membrane destruction, was significantly (P < 0.05) lower in acid-adapted cells than in non-acid-adapted cells for the same amount of reactive oxygen species (ROS) generated at the same dose because the ratio of unsaturated to saturated fatty acids (USFA/SFA) in the cell membrane was significantly (P < 0.05) decreased as a result of acid adaptation. Treated apple juice showed no significant (P > 0.05) difference in quality indicators compared to those of untreated controls during treatment at 1,773 mJ/cm2IMPORTANCE There is a need for novel, mercury-free UV lamp technology to replace germicidal lamps containing harmful mercury, which are routinely utilized for UV pasteurization of apple juice. In addition, consideration of the changes in response to antimicrobial treatments that may occur when pathogens are adapted to the acid in an apple juice matrix is critical to the practical application of this technology. Based on this, an investigation using 222-nm KrCl excilamp technology, an attractive alternative to mercury lamps, was conducted. Our study demonstrated increased resistance to 222-nm KrCl excilamp treatment as pathogens adapted to acids, and this was due to changes in reactivity to ROS with changes in the fatty acid composition of the cell membrane. Despite increased resistance, the 222-nm KrCl excilamp achieved pathogen reductions of 5 log or more at laboratory scale without affecting apple juice quality. These results provide valuable baseline data for application of 222-nm KrCl excilamps in the apple juice industry.


Assuntos
Ácidos/metabolismo , Escherichia coli O157/fisiologia , Escherichia coli O157/efeitos da radiação , Sucos de Frutas e Vegetais/microbiologia , Salmonella typhimurium/fisiologia , Salmonella typhimurium/efeitos da radiação , Adaptação Fisiológica , Cloro/química , Cloro/farmacologia , Escherichia coli O157/crescimento & desenvolvimento , Irradiação de Alimentos/instrumentação , Irradiação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Concentração de Íons de Hidrogênio , Criptônio/química , Criptônio/farmacologia , Lasers de Excimer , Malus/química , Malus/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento
18.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315076

RESUMO

The purpose of this study was to investigate the synergistic bactericidal effect of 222-nm KrCl excilamp and 254-nm low-pressure (LP) Hg lamp simultaneous treatment against Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium, and Listeria monocytogenes in tap water and to identify the synergistic bactericidal mechanism. Sterilized tap water inoculated with pathogens was treated individually or simultaneously with a 254-nm LP Hg lamp or 222-nm KrCl excilamp. Overall, for all pathogens, an additional reduction was found compared to the sum of the log unit reductions of the individual treatments resulting from synergy in the simultaneous treatment with both kinds of lamps. In order to identify the mechanism of this synergistic bactericidal action, the form and cause of membrane damage were analyzed. Total reactive oxygen species (ROS) and superoxide generation as well as the activity of ROS defense enzymes then were measured, and the overall mechanism was described as follows. When the 222-nm KrCl excilamp and the 254-nm LP Hg lamp were treated simultaneously, inactivation of ROS defense enzymes by the 222-nm KrCl excilamp induced additional ROS generation following exposure to 254-nm LP Hg lamp (synergistic) generation, resulting in synergistic lipid peroxidation in the cell membrane. As a result, there was a synergistic increase in cell membrane permeability leading to a synergistic bactericidal effect. This identification of the fundamental mechanism of the combined disinfection system of the 222-nm KrCl excilamp and 254-nm LP Hg lamp, which exhibited a synergistic bactericidal effect, can provide important baseline data for further related studies or industrial applications in the future.IMPORTANCE Contamination of pathogenic microorganisms in water plays an important role in inducing outbreaks of food-borne illness by causing cross-contamination in foods. Thus, proper disinfection of water before use in food production is essential to prevent outbreaks of food-borne illness. As technologies capable of selecting UV radiation wavelengths (such as UV-LEDs and excilamps) have been developed, wavelength combination treatment with UV radiation, which is widely used in water disinfection systems, is actively being studied. In this regard, we have confirmed synergistic bactericidal effects in combination with 222-nm and 254-nm wavelengths and have identified mechanisms for this. This study clearly analyzed the mechanism of synergistic bactericidal effect by wavelength combination treatment, which has not been attempted in other studies. Therefore, it is also expected that these results will play an important role as baseline data for future research on, as well as industrial applications for, the disinfection strategy of effective wavelength combinations.


Assuntos
Desinfecção/métodos , Água Potável/microbiologia , Escherichia coli O157/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Salmonella typhimurium/efeitos da radiação , Raios Ultravioleta , Cloro/química , Criptônio/química , Mercúrio/química
19.
Food Res Int ; 109: 325-333, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803456

RESUMO

The object of this study was to elucidate the bactericidal mechanism of a 222 nm Krypton Chlorine (KrCl) excilamp compared with that of a 254 nm Low Pressure mercury (LP Hg) lamp. The KrCl excilamp had higher bactericidal capacity against Gram-positive pathogenic bacteria (Staphylococcus aureus and L. monocytogenes) and Gram-negative pathogenic bacteria (S. Typhimurium and E. coli O157:H7) than did the LP Hg lamp when cell suspensions in PBS were irradiated with each type of UV lamp. It was found out that the KrCl excilamp induced cell membrane damage as a form of depolarization. From the study of respiratory chain dehydrogenase activity and the lipid peroxidation assay, it was revealed that cell membrane damage was attributed to inactivation of enzymes related to generation of membrane potential and occurrence of lipid peroxidation. Direct absorption of UV radiation which led to photoreaction through formation of an excited state was one of the causes inducing cell damage. Additionally, generation of ROS and thus occurrence of secondary damage can be another cause. The LP Hg lamp only induced damage to DNA but not to other components such as lipids or proteins. This difference was derived from differences of UV radiation absorption by cellular materials.


Assuntos
Cloretos/química , Manipulação de Alimentos/instrumentação , Irradiação de Alimentos/instrumentação , Microbiologia de Alimentos/instrumentação , Doenças Transmitidas por Alimentos/prevenção & controle , Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos da radiação , Criptônio/química , Compostos de Mercúrio/química , Raios Ultravioleta , Dano ao DNA , Desenho de Equipamento , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Doenças Transmitidas por Alimentos/microbiologia , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/metabolismo , Cinética , Peroxidação de Lipídeos/efeitos da radiação , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Listeria monocytogenes/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Salmonella typhimurium/efeitos da radiação , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Staphylococcus aureus/efeitos da radiação
20.
Int J Food Microbiol ; 217: 85-93, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26496412

RESUMO

This study was undertaken to evaluate the effect of vacuum impregnation applied to the washing process for removal of Salmonella Typhimurium and Listeria monocytogenes from broccoli surfaces. Broccoli was inoculated with the two foodborne pathogens and treated with simple dipping washing or with vacuum impregnation in 2% malic acid for 5, 10, 20, or 30 min. There were two methods of vacuum impregnation: continuous and intermittent. After 30 min of 101.3 kPa (=14.7 psi, simple dipping), 61.3 kPa (=8.9 psi), and 21.3 kPa (=3.1 psi) of continuous vacuum impregnation treatment, there were 1.6, 2.0, and 2.4 log 10 CFU/g reductions of S. Typhimurium and 1.5, 1.7, and 2.3 log 10 CFU/g reductions of L. monocytogenes, respectively. After 30 min of 101.3, 61.3, and 21.3 kPa of intermittent vacuum impregnation treatment, there were 1.5, 2.3, and 3.7 log 10 CFU/g reductions of S. Typhimurium and 1.6, 2.1, and 3.2 log 10 CFU/g reductions of L. monocytogenes, respectively. Scanning electron photomicrographs showed that bacteria tend to attach to or become entrapped in protective sites after simple wash processing (dipping). However, most bacteria were washed out of protective sites after intermittent treatment. Direct treatment of cell suspensions with vacuum impregnation showed that it had no inactivation capacity in itself since there were no significant differences (P ≥ 0.05) between the reduction rates of non- and vacuum impregnation treatment. These results demonstrate that the increased antimicrobial effect of vacuum impregnation can be attributed to increased accessibility of sanitizer and an enhanced washing effect in protected sites on produce. Color, texture and titratable acidity values of broccoli treated with intermittent vacuum impregnation in 2% malic acid for 30 min were not significantly (P ≥ 0.05) different from those of untreated samples even though a storage interval was needed for titratable acidity values to be reduced to levels comparable to those of untreated controls.


Assuntos
Brassica/microbiologia , Desinfetantes/farmacologia , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Listeria monocytogenes/efeitos dos fármacos , Malatos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Contagem de Colônia Microbiana , Doenças Transmitidas por Alimentos/microbiologia , Microscopia Eletrônica de Varredura , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...